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ABSTRACT: Mouse hepatitis virus (MHV) is a positive-strand RNA virus that causes an acute encephalomyelitis 
that later resolves into a chronic fulminating demyelinating disease. Cytokine production, chemokine secretion, 
and immune cell infiltration into the central nervous system are critical to control viral replication during acute 
infection. Despite potent antiviral T-lymphocyte activity, sterile immunity is not achieved, and MHV chronically 
persists within oligodendrocytes. Continued infiltration and activation of the immune system, a result of the lin-
gering viral antigen and RNA within oligodendrocytes, lead directly to the development of an immune-mediated 
demyelination that bears remarkable similarities, both clinically and histologically, to the human demyelinating 
disease multiple sclerosis. MHV offers a unique model system for studying host defense during acute viral infec-
tion and immune-mediated demyelination during chronic infection.
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I. MOUSE HEPATITIS VIRUS

Mouse hepatitis virus (MHV) is a positive-strand 
RNA virus and a member of the family Corona-
viridae, representing a significant and ubiquitous 
group of viral pathogens that infect both humans 
and animals, causing respiratory, gastrointestinal, 
and neurologic diseases. MHV, a group II coro-
navirus, is a natural pathogen of mice, normally 
infecting the liver, gastrointestinal tract, and central 
nervous system (CNS), and causing a wide range 
of diseases, including hepatitis, gastroenteritis, and 
acute and chronic encephalomyelitis.1-3 MHV 
pathogenesis is dependent upon several factors, 
including viral strain, mouse background, and 
inoculation route.4 Structurally, MHV is com-

prised of three main proteins: the nucleocapsid 
(N, 60 kDa), which forms a helical complex 
with the genome; the membrane protein (M, 
25 kDa), which associates with the nucleocapsid 
and aids in envelope formation and budding; and 
the extracellular spike glycoprotein (S, 180 kDa), 
which associates with the membrane protein 
and controls host cell receptor recognition and 
fusion.2-4 MHV spike glycoprotein recognizes the 
host cell receptor CEACAM-1 (carcinoembryonic 
antigen-cell adhesion molecule-1)5,6 and dictates 
host pathogenesis and immune responses.7-9

 Intracranial inoculation of susceptible strains 
of mice with neuro-adapted strains of MHV 
induces an acute encephalomyelitis that evolves 
into a chronic fulminating demyelinating disease.10 

ABBREVIATIONS

MHV, mouse hepatitis virus; CNS, central nervous system; MS, multiple sclerosis; NK, natural killer; MMP, 
matrix-metalloproteinase; TNF, tumor necrosis factor; IFN, interferon; IL, interleukin; EAE, experimental 
autoimmune encephalomyelitis
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During acute encephalomyelitis, MHV infection 
stimulates the production of pro-inflammatory 
cytokines and chemokines that activate and attract 
the antiviral arms of the immune system.11-13 
Antiviral effector T lymphocytes are absolutely 
required for controlling viral replication via IFN-γ 
secretion or cytolytic activity.14,15 Eventually, 
MHV is cleared below detectable levels, but sterile 
immunity is not achieved. The majority of mice 
that survive the initial acute infection develop an 
immune-mediated chronic demyelinating disease, 
characterized by viral persistence within white 
matter tracts of the spinal cord and continued 
T lymphocyte and macrophage infiltration.16-19 
Numerous clinical and histological similarities 
exist between MHV-induced demyelination and 
the human demyelinating disease multiple sclerosis 
(MS), making the MHV model system relevant for 
evaluating the underlying mechanisms associated 
with disease and repair. Moreover, given that the 
etiology of MS remains enigmatic,20-23 and infec-
tious agents such as viruses have been considered 
possible environmental triggering agents,20,24-27 the 
application of viral models of demyelination offers 
unique and important insight into the potential 
mechanisms that trigger and maintain immune-
mediated demyelination. This review will provide 
a succinct overview of mechanisms associated 
both with host defense and disease progression 
in response to MHV infection of the CNS.

II. ACUTE MHV-INDUCED 
ENCEPHALOMYELITIS

Following intracranial infection, MHV replicates 
first within the ependymal cells of the lateral 
ventricles before spreading throughout the paren-
chyma, targeting astrocytes, oligodendrocytes, 
and microglia28 (Fig. 1). Neurons are spared 
within immunocompetent mice inoculated with 
neuro-attenuated strains of MHV.29-31 Following 
infection, MHV also trafficks to the spinal cord, 
spreading through the cerebral spinal fluid and 
similarly infecting the local ependyma before dis-
seminating throughout the parenchyma.28 MHV 
infection of the CNS manifests significant early 
up-regulation of inflammatory cytokines, chemok-
ines, and matrix-metalloproteinases (MMPs), all 
of which serve to initiate, attract, and support a 
robust host antiviral response.11-13,32-37

Type I interferons (IFN-α and IFN-β), 
IL-1α, IL-1β, IL-6, IL-12, and tumor necrosis 
factor-alpha (TNFα) are secreted following MHV 
infection.12,13,32-34 Protective roles for the type I 
interferons during MHV infection have been 
well described. Exogenous treatment of either 
IFN-α or IFN-β limits MHV replication and 
dissemination within the CNS,38,39 while mice 
deficient in IFN-α/β-receptor quickly succumb 
to MHV infection.40 However, the mechanisms of 
type I IFN in in vivo protection are complicated 
because MHV is resistant to IFN-β treatment  
in vitro.41 Additionally, evidence suggests that 
MHV can shield its viral RNA genome from 
host pattern recognition receptors and therefore 
prevent IFN-β induction.42,43 Nevertheless, type I 
IFNs are clearly protective in vivo, and may help 
to regulate innate and adaptive immune responses 
by enhancing MHC I expression.44

 Neutrophils, natural killer (NK) cells, and 
macrophages are the primary innate immune cells 
recruited into the CNS immediately following 
MHV infection.45,46 Neutrophils are detectable 
within the CNS by day 1 post-infection and peak 
between days 3 to 5,45,47 responding to chemot-
actic signals through the chemokine receptor 
CXCR2.47 Neutrophils are primarily responsible 
for degrading the blood-brain barrier through 
MMP  secretion, facilitating extracellular matrix 
and basement lamina degradation and subsequent 
leukocyte migration48,49 (Fig. 1). Although neu-
trophils secrete MMP-9,36,49 they are not the sole 
source of MMPs within the CNS, as MMP-3 
and MMP-12 are derived from resident glia.35 
Nevertheless, neutrophils are indispensable for 
proper antiviral responses, because their deple-
tion prevents leukocyte entry into the CNS, thus 
limiting effective control of viral replication and 
spread.49

 Similar to neutrophils, NK cells rapidly and 
transiently infiltrate into the CNS following 
MHV infection, peaking at day 5 post-infection.46 
Overexpression of viral-derived CXCL10 in 
immune-deficient mice enhanced NK cell infil-
tration and reduced viral burden,50 suggesting 
that NK cells may contribute to controlling viral 
replication. However, depletion of NK cells in 
immune-compromised mice did not enhance viral 
burden,51 and, moreover, the absence of NK cells 
within the CNS of immune-competent mice did 
not influence viral clearance or pathogenesis,46 
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indicating that NK cells probably play little to no 
role in viral clearance under normal circumstances 
of MHV infection.

 Inflammatory macrophages are first detect-
able by day 2 post-infection45 and, unlike the 

transitory neutrophils and NK cells, continue to 
accumulate within the CNS during the course of 
infection. Macrophage infiltration is dependent 
upon numerous chemokine-signaling pathways, 
including CCR2/CCL2,52,53 CCL3,54 and CCL5/

FIGURE 1. MHV pathogenesis. Following intracranial infection of susceptible mice, MHV replicates within astro-
cytes and oligodendrocytes. Among the earliest immune cells responding to infection, neutrophils are recruited 
into the CNS and serve to degrade the blood-brain barrier through the release of MMPs, including MMP9, thus 
facilitating subsequent immune cell entry. Activated astrocytes secrete the T cell and macrophage chemoat-
tractants CXCL9, CXCL10, and CCL5, directing virus-specific CD4+ and CD8+ T cells and macrophages into the 
CNS. Direct cytolytic activity by CD8+ T cells, mediated through perforin and granzyme B secretion, aids in viral 
clearance from infected astrocytes. Both CD4+ and CD8+ T cells also secrete IFNγ, activating macrophages and 
microglia and promoting viral control within infected oligodendrocytes. Viral clearance from oligodendrocytes 
is incomplete, and MHV antigen and/or RNA persist within oligodendrocytes. Chronic MHV persistence drives 
continued CXCL10/CCL5 secretion and T-cell/macrophage infiltration within the CNS, leading to the development 
of immune-mediated demyelination. Activated macrophages/microglia present within the white matter digest 
myelin debris and serve to further enhance demyelination.
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CCR5.55-57 Similar to NK cells, macrophages do 
not appear to perform any direct antiviral activity 
within the CNS, because depletion of macrophages 
or neutralization of CCL5 during acute MHV 
infection does not enhance viral burden.57,58

 Both myeloid- (CD11b+ CD11c+) and 
lymphoid (CD11b- CD11c+)-derived dendritic 
cells are detectable within the CNS by day 2 
post-infection,59 although the chemotactic signals 
controlling their infiltration has not been fully 
explored. Migration of myeloid dendritic cells to 
the draining lymph nodes is dependent in part on 
CCL3 expression.59 Moreover, CCL3 deficiency 
reduces lymph node dendritic cell activation and 
skews TH1 anti-MHV responses.59

Early following MHV infection, virus-specific 
T cells are detectable within the local lymph 
nodes and spleen and subsequently migrate into 
the CNS60 (Fig. 1). Protective immunity and 
antiviral responses conform to a TH1 phenotype, 
which is broadly characterized by vigorous IFN-γ 
secretion and cytolytic activity.14,15,61 Virus-specific 
T-cell generation is independent of IL-12 and/or 
IL-23, as viral clearance is unaffected following 
antibody neutralization of IL-23 and IL-12/2362 
or genetic deletion of IL-12.63 T cells isolated from 
the CNS are CXCR3-reactive,64 and their migra-
tion into the CNS is dependent upon the CXCR3 
ligands CXCL9 and CXCL10.64-67 Neutralization 
of CCL5 during infection also abrogates CD4+ 
and CD8+ T-cell infiltration57; however, CCR5-
deficient CD8+ T cells adoptively transferred into 
MHV-infected RAG1-/- recipients have no prob-
lem trafficking into the CNS,68 while transferred 
CCR5-deficient CD4+ T cells do not efficiently 
enter the CNS.69 Virus-specific CD8+ T cells are 
the main cytolytic effector cell within the CNS and 
begin to accumulate by 5 days post-infection.16,60 
CD8+ T cells are essential to controlling MHV 
replication,57,61 and their accumulation within 
the CNS is concurrent with viral clearance from 
resident glia,61,70,71 CD8+ T cells isolated from the 
CNS are cytolytic ex vivo,71,72 secreting IFN-γ 
and lytic molecules, including granzyme B and 
perforin.17 In vivo, perforin-mediated cytolysis 
eliminates MHV from astrocytes and microglia14 
and IFN-γ controls MHV replication within oli-
godendroglia.15,73 Recent evidence has also dem-
onstrated that NKG2D signaling within the CNS 
enhances antiviral CD8+ cytotoxic activity.72

 Virus-specific CD4+ T cells function in a 
supporting role for CD8+ T cells, and they are 
also critical in controlling MHV replication.57,74  
In vivo, CD4+ T cells secrete IFN-γ, facilitating 
viral clearance from oligodendroglia,15,73 up-regu-
lating MHC class II expression on microglia61 and 
MHC class I expression on oligodendroglia,75 and 
thus enhancing immune cell activity within the 
CNS.61,76 CD8+ cytotoxicity and survival within 
the CNS is heavily dependent upon the presence 
of CD4+ T cells.77,78 How CD4+ T cells support 
and enhance CD8+ T-cell activity is unknown, 
however, it is assumed to be a secreted factor, 
because CD4+ T cells are spatially restricted near 
the vasculature, instead of migrating throughout 
the parenchyma like CD8+ T cells, possibly as a 
result of CD4+ T-cell TIMP-1 expression.35

 Antibody-secreting cells are detectable within 
the CNS of MHV infected mice by 5 days post-
infection, and neutralizing antibody is detectable 
within the serum by 10 days post-infection.79 
However, B cells do not participate in viral clear-
ance during acute infection,80,81 rather, MHV-
specific antibodies prevent viral recrudescence in 
chronically infected mice.80-82

III. CHRONIC MHV-INDUCED 
DEMYELINATION

After 2 weeks of MHV infection, viral loads 
within the brain are reduced to below-detectable 
levels by plaque assay. However, sterile immunity 
is not achieved, and viral antigen and/or RNA are 
detectable within oligodendrocytes up to a year 
post-infection11,83 (Fig. 1). Mechanisms contrib-
uting to viral persistence may include antigenic 
escape variants84 and the generation of RNA 
quasispecies, although with regard to the later, 
the observed mutations are random and neither 
indicate specific immune pressure nor aid in escape 
from CD4+ or CD8+ surveillance.85 More recently, 
CD8+ T-cell exhaustion has been proposed to be a 
mechanism of MHV persistence. During chronic 
MHV infection, oligodendrocytes prominently 
express B7-H1 concurrently with infiltrating virus-
specific CD8+ T cells that express PD-1. In the 
absence of B7-H1, MHV is cleared faster from 
the CNS, confirming that B7-H1/PD-1 signaling 
inhibits CD8+ antiviral activity in vivo.86
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 Mice that survive acute MHV infection 
develop a chronic immune-mediated demyeli-
nating disease. Infected mice first demonstrate 
signs of ascending demyelination during acute 
infection, which ranges from limp tails to partial 
and complete hind limb paralysis. Analysis of the 
spinal cords of chronically infected mice confirms 
that the loss of myelin integrity is associated with 
the continued presence of both viral antigen and 
inflammatory immune cells87 and not the apoptotic 
or necrotic death of myelinating oligodendro-
cytes.88 No role for endogenous complement or 
antibody-mediated demyelination has been docu-
mented,89 although exogenous auto-antibodies can 
exacerbate demyelination independent of comple-
ment during chronic infection.90 Nevertheless, 
the immunopathology observed during chronic 
MHV infection resembles what is observed in 
the majority of active MS lesions,10,91 making 
chronic MHV infection an excellent model to 
study mechanisms of pathogenesis and potential 
treatments.

 Concomitant with the absence of detectable 
infectious virus, total immune infiltration into the 
CNS wanes by 2 weeks post-infection, yet virus-
specific T cells and macrophages remain within 
the CNS for up to 3 months.16-19 Unlike in other 
models of CNS demyelination92-94 and in MS,95-97 
autoreactive T cells to defined myelin epitopes 
are not considered important in contributing to 
disease, indicating that chronic demyelination 
is mainly driven by antiviral responses and not 
epitope spreading.

 While both CD4+ and CD8+ T cells remain 
CXCR3+ during chronic infection,64 only CD4+ 
T cells appear to rely upon CXCL10 for antiviral 
trafficking into the CNS; CD8+ T-cell infiltration 
remains unaffected during CXCL10 neutraliza-
tion.19 Notably, CCL5 neutralization abrogates 
both CD4+ and CD8+ T-cell accumulation dur-
ing chronic infection,56 indicating differential 
chemokine usage between the T-cell subsets.98

 The main effectors of demyelination during 
chronic MHV infection are T cells and mac-
rophages (Fig. 1). Both CD4+ and CD8+ T cells 
are important to the pathogenesis of chronic 
demyelination, although to differing degrees. 
Mice deficient in adaptive immune systems57,74,88 
or CD4+ T cells57 do not readily demyelinate, 
regardless of their ability to clear virus. Moreover, 
adoptive transfer of CD4+ T cells into infected 

RAG1-deficient hosts is sufficient to initiate 
demyelination.57 CD4+ T cells also enhance 
demyelination by attracting macrophages through 
CCL5 secretion.57 Although it was reported that 
CD8-/- mice exhibit muted demyelination dur-
ing chronic MHV infection,57 IFN-γ-dependent 
demyelination was observed following the transfer 
of CD8+ T cells into RAG-1-/- mice,74,99,100 pro-
viding evidence that CD8+ T cells are capable of 
initiating and potentiating demyelination.

Although the exact mechanisms of demyelina-
tion have not be fully characterized, T-lympho-
cyte-secreted inflammatory cytokines, including 
IFN-γ and TNF-α, persist within the brain13 and/
or spinal cord19,72 up to 4 weeks post-infection, 
even though infectious virus is no longer detectable. 
CD8+ cytolytic activity is muted during chronic 
infection, presumably as a result of decreasing viral 
antigen17,71; however, these cells still retain their 
capacity to secrete IFN-γ.70

 Within chronically MHV infected mice, apop-
tosis has been observed to be associated with areas 
of pathological damage.101 However, no causal link 
between apoptosis and demyelination has been 
established, especially since RAG1-/- and wild-
type mice display similar patterns of apoptosis, 
while only wild-type mice readily demyelinate.88 
Moreover, demyelination is observed during 
chronic MHV infection within mice that lack 
IFN-γR1 upon oligodendroglia, indicating that 
additional mechanisms for damage in addition 
to IFN-γ certainly exist.

 Nevertheless, IFN-γ is directly harmful to both 
oligodendrocytes and oligodendrocyte precursor 
cells, reducing cell viability and inducing apoptosis, 
and, in some cases, necrosis.102-110 IFN-γ can also 
indirectly induce microglia/macrophage secretion 
of TNF-α and nitric oxide, triggering oligoden-
drocyte cell death.111, 112 Moreover, IFN-γ overex-
pression during development results in widespread 
hypomyelination and oligodendrocyte loss,104,113-115 
while IFN-γ overexpression abrogates remyeli-
nation and recovery during cuprizone-induced 
demyelination or peak experimental autoimmune 
encephalomyelitis (EAE) disease.116 Within active 
MS lesions, IFN-γ is detectable by immunohis-
tochemistry and is associated with oligodendrocyte 
apoptosis at the leading edges of the lesion.105 
Moreover, IFN-γ treatment of MS patients exac-
erbates disease,117 whereas IFN-γ neutralization 
reduces disease disability.118 Interestingly, within 
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the spinal cords of chronically infected mice that 
have been treated with neutralizing antibodies for 
CXCL10, IFN-γ mRNA levels are reduced, and 
this is associated with reduced demyelination and 
enhanced remyelination.19

 As with other demyelinating diseases,119,120 

ultrastructural analysis of MHV-induced demy-
elinating lesions reveal myelin-laden macrophages 
stripping and engulfing myelin121 (Fig. 1). Dur-
ing chronic infection, macrophages are spatially 
associated within demyelinating white matter 
lesions of the spinal cord and are critical to 
demyelination. Neutralization of the potent 
macrophage chemokine CCL5 during chronic 
infection diminishes macrophage infiltration into 
the CNS and is associated with reduced demyeli-
nation.56,57 Moreover, genetic silencing of CCR5, 
the chemokine receptor for CCL5, also prevents 
widespread demyelination, even in the absence 
of viral clearance.55 Adoptive transfer of MHV-
immunized splenocytes into RAG1-/- recipients 
resulted in rapid demyelination, and this was 
associated with the widespread recruitment of 
activated macrophages to regions of pathology.88 
These observations are consistent with other 
models of demyelination, including EAE122,123 
and cuprizone-induced demyelination124; reactive 
macrophages have also been described within 
demyelinating MS plaques.125

 Although the main effectors of demyelina-
tion are certainly T cells and macrophages, this 
does not preclude the possibility that MHV 
may directly participate in damage, especially 
since oligodendrocytes are the main reservoir 
of MHV during chronic infection.73,126 In some 
MS lesions, oligodendrocyte apoptosis has also 
been observed127,128; however, the exact role of 
apoptosis in MS pathogenesis and pathology is 
unresolved.129 In vitro, cultured murine oligo-
dendrocytes are susceptible to MHV-induced 
apoptosis through FAS-spike glycoprotein 
interactions.130-133 Moreover, the HIV protein 
Tat134 and the JC virus protein agnoprotein135 
also enhance oligodendrocyte apoptosis in vitro. 
However, in vivo oligodendrocyte apoptosis 
during chronic MHV infection is not readily 
observed, and the presence of viral antigen does 
not appear to predispose an oligodendrocyte to 
apoptosis.88 Therefore, it is likely that protective 
mechanisms exist during chronic infection that 

protect oligodendrocytes from MHV, IFN-γ, and 
other apoptotic inducers.

 Endogenous remyelination has been observed 
within chronic MHV demyelinating lesions.136-138 
Moreover, remyelination and actively proliferat-
ing oligodendrocytes have been observed within 
MS lesions, indicating that repair can occur 
concurrently with acute or chronic inflammatory 
events.139,140 In vitro, growth factors and cytok-
ines including IGF (insulin-like growth factor), 
CNTF (ciliary neurotrophic factor), LIF (leukemia 
inhibitory factor), NT3 (neurotrophin-3), and 
PDGF (platelet-derived growth factor) promote 
oligodendrocyte survival.141-144 Additionally, the 
cytokine IL-11, which has been detected on 
reactive astrocytes within MS lesions145 and in 
MHV-infected astrocytes,146 has recently been 
demonstrated to enhance oligodendrocyte survival 
in vitro.145 Studies by Kilpatrick et al.147-149 have 
further demonstrated a potent role for LIF in 
limiting demyelination during EAE by enhancing 
oligodendrocyte survival in vivo. Taken together, 
these data indicate the complex protective and 
damaging inflammatory environment that exists 
within demyelinating lesions.

IV. CONCLUSIONS

 This review highlights MHV as a model system 
for viral-induced neurologic disease. Specifically, 
MHV offers a platform for differentially study-
ing the underlying mechanisms that dictate host 
defense during acute viral infection and later 
contribute to demyelination during chronic viral 
persistence. Notably, the pathology observed dur-
ing chronic MHV demyelination closely parallels 
the damage observed in MS patients. Recent 
documented inconsistencies between EAE and 
MS,117,150,151 in which protective treatments in 
EAE exacerbate or have no effect on MS patients, 
underscore the necessity for the broader applica-
tion of diverse demyelinating models that can 
complement each other and lead to a greater 
understanding of the fundamental processes that 
lead to demyelination and the development of 
MS.
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